

The Economics of Biochar Production

PNW Biochar Group Meeting Richland, WA May 21-22, 2009

T R Miles Technical Consultants

T R Miles Technical Consultants, Inc.

- Design and development of energy and environmental processes.
 - Industries Biomass energy Pollution control Materials handling Feed, Food and Fuels

Topics

- Product Definition
 - What is Biochar? What is Biochar Worth?
- Biochar, Sources and Markets, Competing Uses
- Examples of companies making Biochar
 - Biochar
 - Torrified wood, charcoal and power
 - Charcoal , heat, pellets
- What it will take to make Biochar?
 - Technology, process
 - Products
 - End user markets / prices
- Economics of biochar TR Miles Technical Consultants, Inc.

Product Definition: What is Biochar?

Biochar is a fine-grained, highly porous charcoal that helps soils retain nutrients and water. IBI

IBI

EPRIDA

COLLINS

LEHMANN

TR Miles Technical Consultants, Inc.

Product Value: What is Biochar Worth?

Agronomic Benefits

FERTILITY

Environmental Benefits

SOIL STRUCTURE

NUTRIENT RETENTION IBI

TR Miles Technical Consultants, Inc.

Biomass Sources and Markets

- Sources
 - Unused Straw grain and grass seed
 - Forest Residues slash, fuel reduction
 - Agricultural and Forest Industry Residues
 - Urban Wood Waste
- Markets
 - Soil remediation and storm water nutrient management
 - Horticulture, nursery and urban landscaping
 - Crops and soil amendment, e.g. biochar + digested solids, composting

Competing Uses for Biomass 200,000 wet tpy – 20 tph

Product	Capacity	Qty Tpy	\$	\$/ton biomass	
Power	20 MWe	200,000	0.10/kWh	\$100	1MWh/ton
Pellets/Brick	20 TPH	100,000	\$150/ton	\$150/ton	0.5 ton/ton
Heat	160 MMBtuh	200,000	\$10/MMBtu		70% eff
Torrefaction	20 TPH	70,000 tpy	\$120/ton	\$100/ton	\$10/MMBtu
Charcoal	20 TPH	40,000 tpy	\$400/ton	\$100/ton	40% eff
Biochar	20 TPH	30,000 tpy	\$200/ton		
		30,000 tpy			
Soil	2 t/acre		\$40/cu yd	\$40/ton	

Biomass Flows in the U.S. Economy

Making Biochar

http://www.holon.se/folke/carbon/simplechar/simplechar.shtml

BARREL KILN

http://terrapreta.bioenergylists.org/taxonomy/term/674

Making char in a Downdraft Gasifier: Air for Oxidation is Supplied Through a Manifold to Nozzles

- A manifold feeds nozzles that supply air to the oxidation zone.
- A cap is removed to light the hearth and observe oxidation and fuel movement.
- Gas exits in pipe below hearth.
- Gas is cleaned and burned for greenhouse heat or to run an engine to generate power (30 kWe).

FLUIDYNE GASIFICATION www.fluidynenz.250x.com

Incoming Fuel Oxidizes Producing Heat to Convert Wood to Charcoal and Gas

- Gases evolve from the heated wood and burn between the wood particles.
- Air from the nozzles scours the charred surface of the burning wood particles.
- Combustion takes place between the char particles converting the gases to CO2 and producing heat.

Incoming Fuel Oxidizes to Produce Heat to Convert Wood to Charcoal and Gas

- Combustion of the volatiles leaves "oxidation char."
- The char is light weight and has a bright sheen to the surface.
- Carbonization breaks the blocks of fuel apart according to the structure of the wood.

Biochar Engineering

- Top Fed Carbonizer
- Wood Chips 100 kg/hr
- Char 50 kg/hr
- Gas recycle in Afterburner
- Temperature ControlField designs
- •BLM Field Tests Colorado Slash 2009
- •1TPH in Development
- •Prior experience:
 - Down Draft gasifiersEPRIDA

www.biocharengineering.com

TR Miles Technical Consultants, Inc.

www.bestenergies.com

Alterna Energy Continuous Kiln

Alterna Energy www.alternaenergy.ca

TR Miles Technical Consultants, Inc.

Small Industrial: 2 TPH Carbonizer 3,000 Hrs/yr Sawmill or Urban Wood Waste

Receiving

2 dry ton/hr, 48 ton/day, 3000 hrs/yr

6,000 tons/yr dry

Processing

Shred, Fill, Dry, Carbonize, Cool, Screen, Grind, Bag, Ship

Continuous Kiln

1 process lines; 2-2.7 t/hr

1-70' x 100' process area, 2 operators

Capital: \$500,000-\$1,000,000 Installation: 18 months Products:

Biochar 2,000 tons per year

Excess Gas 10.6 MMBtu ~ 31,000 MMBtu/yr

Products and Markets Sawmill or Urban Wood Waste Only

- Gas or Heat
 - 10.6 MMBth
 - \$10/MMBtu
- Biochar 2,000 tpy
 - Additive to compost (25%)
 - Soil amendment
 - Commercial Fertilizer/Garden Wholesaler
 - Wholesale \$200/ton in bulk bag 600 lb/bag
 - Retail packaging \$250/ton
- Voluntary Green Credit \$0.6 million/yr
 - 2,000 tC x 3t CO2/tC = 6,000 tCO2 @ \$10/tCO2

Economics

Sawmill or Urban Wood Waste Only

Product	Quantit	y Pr	ice/unit	Rev	venue	
Biochar	2 <i>,</i> 000 o	dt/y	\$200/ton	\$ 4	400,000	
Heat	32,000 MN	/lbtu	\$10/MMBtu	\$ 3	320,000	
Green Credit*	6,000	tCO2	\$10/tCO2	\$	60,000	
Total				\$	780,000	
Expenses per dry ton logyard waste			Exp	oenses		
Wood waste	6,00	Ot/y	\$30/ton	\$	180,000	
0&M						
2 empl/shift	6,00	Ot/y	\$70/ton	\$	420,000	
Capital	6,00	Ot/y	\$10/ton	\$	60,000	
Total			\$110/ton	\$	660,000	
Income				\$	120,000	
				Ş	120,000	

3 tCO2/tC

Small Industrial: 2 TPH Carbonizer 8,000 Hrs/yr Full Capacity 1 Line

Receiving

2.5 dry ton/hr, 48 ton/day, 8000 hrs/yr

20,000 tons/yr dry

Processing

Shred, Fill, Dry, Carbonize, Cool, Screen, Grind, Bag, Ship

Continuous Kiln

1 process line; 2-2.7 t/hr

1-70' x 100' process area, 2 operators

Capital: \$500,000 Installation: 18 months Products:

Biochar 6,600 tons per year

Excess Gas 13.2 MMBtu ~ 105,600 MMBtu/yr

Products and Markets Full Capacity 1 Line

- Gas or Heat
 - 13.6 MMBth
 - \$10/MBtu
- Biochar 6,600 tpy
 - Additive to compost (25%)
 - Soil amendment
 - Commercial Fertilizer/Garden Wholesaler
 - Wholesale \$200/ton in bulk bag 1000 lb/bag
 - Retail packaging \$250/ton
- Voluntary Green Credit \$1.8 million/yr
 - 6,600 tC x 3t CO2/tC = 19,800 tCO2 @ \$10/tCO2

Economics

Full Capacity : 1 Line

Product	Q	uantity	Price/unit	Revenue
Biochar		6,600 odt/y	\$200/ton	\$ 1,320,000
Heat	105	5,600 MMbtu	\$10/MMBtu	\$ 1,056,000
Green Credit*		19,800 tCO2	\$10/tCO2	<u>\$ 198,000</u>
Total				\$ 2,464,000
Expenses per dry ton logyard waste				Expenses
Area woodwaste		20,000 t/y	\$30/ton	\$ 600,000
0&M				
2 empl/shift		20,000t/y	\$30/ton	\$ 600,000
Capital		20,000t/y	\$3/ton	<u>\$ 60,000</u>
Total			\$63/ton	\$ 1,260,000
Income				\$ 1,204,000

* 3 tCO2/tC

Large industrial: 11 TPH Carbonizer 8,000 Hrs/yr Full Capacity Five Lines

Receiving

11 dry ton/hr, 270 ton/day; 56 cu yd/hr, 1345 cu yd/day 90,000 tons/yr dry; 448,000 cu yd/yr

Processing

Shred, Fill, Dry, Carbonize, Cool, Screen, Grind, Bag, Ship Continuous Kiln

5 process lines; 2.7 t/hr/ea, 11 cu yd/hr /ea

2 -70' x 100' bldgs, 2 operators

Capital: \$7 million Installation: 18 months Products:

Biochar 30,000 tons per year

Excess Gas 475,000 MMBtu ~ 30,000 Mwhe

Products and Markets Full Capacity 5 Lines

- Gas or Heat
 - 60 MMBth ~ 4.5 Mwhe
 - 60 MMBtuh/15 Mmbtu/Mwe 32,000 MWhe
 - \$10/MMBtu
- Biochar 30,000 tpy
 - Additive to compost (25%)
 - Soil amendment
 - Commercial Fertilizer/Garden Wholesaler
 - Wholesale \$200/ton in bulk bag 1000 lb/bag
 - Retail packaging \$250/ton
- Voluntary Green Credit \$1.8 million/yr
 - 30,000 tC x 3t CO2/tC = 90,000 tCO2 @ \$10/tCO2

Economics 11 TPH 8,000 hrs/yr

Product	Q	uantity	Price/unit	Revenue
Biochar		30,000 odt/y	\$200/ton	\$ 6,000,000
Heat	475,000 MMbtu		\$10/MMBtu	\$ 4,750,000
Green Credit*	90,000 tCO2		\$10/tCO2	<u>\$ 900,000</u>
Total				\$ 11,650,000
Expenses per dry ton biomass				Expenses
Shredded Biomass		90,000 t/y	\$30/ton	\$ 2,700,000
O&M				
2 empl/shift		90,000t/y	\$20/ton	\$ 1,800,000
Capital		90,000t/y	\$10/ton	<u>\$ 900,000</u>
Total			\$60/ton	\$ 5,400,000
Income				\$ 6,150,000
* 3 tCO2/tC				

Summary

- Biochar is in development
- More plant trials are needed to establish the agronomic and market values of biochar.
- Small scale biochar technologies are under development.
- Returns look good if biochar can be sold for \$200/ton and there is a value (market) for the gas.
- Carbon credits will help make small plants viable.
- Large production facilities are planned but not yet in operation.

Links

- Biochar for Environmental Management: Science and Technology <u>www.biochar-</u> <u>international.org/projectsandprograms/biocharbook2009.html</u>
- Pacific Northwest Biochar

www.pnwbiochar.org http://groups.google.com/group/pnw-biochar?hl=en

- International Biochar Initiative
 <u>www.biochar-international.org</u>
- Terra Preta @ Bioenergylists.org <u>www.biochar.bioenergylists.org</u>
- T R Miles, Technical Consultants, Inc. <u>www.trmiles.com</u>

EDITED BY JOHANNES LEHMANN AND STEPHEN JOSEPH

TR Miles Technical Consultants, Inc.

1470 SW Woodward Way Portland, Or 97225 <u>tmiles@trmiles.com</u> <u>www.trmiles.com</u> 503-292-0107 503-780-8185 mobile

www.biochar.bioenergylists.org

